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PSYCH-UH 1004Q: Statistics for Psychology 

Class 7: Foundations of null hypothesis testing 
- probability and falsification

Prof. Jon Sprouse 
Psychology



The next step: inferential statistics
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Postulate your 
scientific theory

Determine its 
predictions

Design an 
experiment to 
test the predictions

all of your science/psych classes research methods

Describe the 
results

descriptive statistics

Generate all 
possible outcomes 
of the experiment 
based on the 
predictions

inferential statistics 
(frequentist)

Determine how well the 
real experiment 
matches the predictions



Probability Basics 

(frequentist) 
(You are already good at this!)



Probability

Probability is a mathematical statement about how likely an event is to occur. 
It takes a value between 0 and 1, where 0 means the event will never occur, 
and 1 means the event is certain to occur. (You can also think of it as a 
percentage 0% to 100%, but to be precise, probability ranges from 0 to 1.)

As we have already seen, the 
frequentist (or objective) 
approach to probability defines it 
as the relative frequency of the 
event after a large number of 
repetitions (ideally approaching 
an infinite number of repetitions):

Probability as long-run relative frequency:

frequency of the event

# of repetitions
P(event) =

This means “probability of the event”

If the possible outcomes are 
exhaustive and equally likely, you 
can calculate probability without 
a simulation. It is just the 
proportion of critical outcomes to 
all possible outcomes:

critical outcomes

all possible outcomes
P(event) =



Probability - start with a coin

If the coin is fair, then the two outcomes are equally 
likely. This means we can either simulate the long-run 
frequency or calculate the probability directly:

Flipping a coin:

1
2

P(heads) =
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(one flip)

If two events are mutually exclusive (that means they 
cannot both occur simultaneously), then we can calculate 
the probability of either occurring with addition:

P(heads or tails) = P(heads) + P(tails) =

Heads and Tails 
(two flips or two 
coins!)

If two events are independent (that means they don’t 
influence each other), then we can calculate the 
probability of both occurring with multiplication:

P(heads and tails) = P(heads) x P(tails) =
1
4

1
2

+
1
2

= 1

1
2

x
1
2

=



Probability - then try a six-sided die

If the die is fair, then the two outcomes are equally 
likely. This means we can calculate the probability 
directly:

6-sided die:

1
6

P(       ) =

2 or 4 
(one roll)

If two events are mutually exclusive (that means they 
cannot both occur simultaneously), then we can calculate 
the probability of either occurring with addition:

P(2 or 4) = P(2) + P(4) = 

2 and 4 
(two rolls or 
two dice!)

If two events are independent (that means they don’t 
influence each other), then we can calculate the 
probability of both occurring with multiplication:

P(2 and 4) = P(2) x P(4) =

1
6

+
1
6

=
2
6

=
1
3

1
6

x
1
6

=
1
36



Probability - then try a deck of cards

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

There are 52 possible cards. There are 4 “suits” - hearts, diamonds, clubs, 
spades. There are 13 values - 2 through 10 and the Jack, Queen, King, and 
Ace.

number of events you care about

total number of events
=

4
52

≅ .08

And what is the probability of drawing a heart?

P(♥) =
number of events you care about

total number of events
=

13
52

.25=

P(J) =

What is the probability of drawing a jack?



Probability - then try a deck of cards

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

We see the same properties for OR and AND:

≅ .15

What is the probability of drawing a jack and a 7?

P(J or 7) = P(J) + P(7) =

What is the probability of drawing a jack or a 7?

4
52

+
4
52

=
8

52
=

2
13

≅ .006P(J and 7) = P(J) x P(7) =
4
52

x
4
52

=
1

169



Conditional Probability 
(This will feel new)



Why do we care?
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In the inferential statistical methods that we are about to 
learn, called Null Hypothesis Testing, we calculate a 
specific conditional probability:

P(data | null hypothesis)

This conditional probability tells us the probability of the 
data given the assumption that the null hypothesis is true.

This is the metaphorical heart of Null Hypothesis Testing. 
So we need to understand how conditional probabilities 
work, and what they tell us.



The critical concept: conditional probability

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

The probability of an event given that another event has 
occurred. 

Conditional 
Probability:

Let’s say you draw a card, but can’t see it. Your friend tells you it is a heart. 
What is the probability that it is a Jack? 

This is a conditional probability. It is asking what the probability of a Jack is 
given that the card is a heart.

number of events that are both Jack and heart

number of heart events
=

1
13

P(J | ♥) =

The pipe symbol means “given that”



The way to think about it - focus!

Conditional probability is about focusing attention on the world created by 
the given event. 

If you look at the definition of conditional probability, the “given” event is in 
the denominator. The denominator (division) is the mathematical way of 
saying “focus only on these events”.

number of events that are both Jack and heart

number of heart events
=

1
13

P(J | ♥) =

We also see this in the definition of basic probability. The denominator is the 
set of all of the events (both coin faces, all six die faces, the 52 cards). This is 
telling us to focus on all outcomes. That is what basic probability is!

critical outcomes

all possible outcomes
P(event) =

focus on hearts

focus on all outcomes



The way to think about it - focus!

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

The probability of an event given that another event has 
occurred. 

Conditional 
Probability:

number of events that are both Jack and heart

number of heart events
=

1
13

P(J | ♥) =

The denominator tells us to focus only on the heart 
events. That is our space of possibilities.

The numerator tells us to look for the Jack event within the 
space of possibilities (Jack and heart).



The order of conditional probabilities 
(This is important!)



The order of the conditional really matters!

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

The “given” (after the pipe) tells us the space of possible outcomes. This really 
changes the meaning of conditional probabilities

P(J | ♥) =
1
13

What is the probability of a Jack given that the 
card is a heart?

What is the probability of a heart given that 
the card is a Jack?

P(♥ | J) =
1
4

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •



An example you might have intuitions about

What is the probability of being a movie star 
given that someone lives in Los Angeles?

number of movie stars in living in LA

number of people living in LA
=

400
4,000,000

= ~.01%

What is the probability of living in LA given 
that someone is a movie star?

number of movie stars in living in LA

number of movie stars
=

400
500

= ~80%

Here is a fact - a lot of movie stars in the US live in Los Angeles. This is 
because much of the US movie industry is based there.

P(movie star | live in LA)

P(live in LA | movie star)



Why do we care?
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In the inferential statistical methods that we are about to 
learn, called Null Hypothesis Testing, we calculate a 
conditional probability:

P(data | null hypothesis)

This conditional probability tells us the probability of the 
data given the assumption that the null hypothesis is true.

This is the metaphorical heart of Null Hypothesis Testing. 
So we need to understand how conditional probabilities 
work, and what they tell us.



Probability distributions 

(From frequency to probability)



Probability Mass 

(Discrete Variables)



From frequency distributions to probability 
distributions

We have been working extensively with frequency distributions. We know them 
inside and out. Now here’s the big reveal — we can also use distributions to 
explore probability.

(We’ve already done this with the normal distribution. So this shouldn’t be 
surprising. Also, probability is frequency under the frequentist view, so it 
shouldn’t be surprising that we can use the same math for both frequency and 
probability!)

Here is a probability distribution for 
flipping 1 coin, and asking the 
probability that we get 0 heads 
(which is tails!) or 1 heads. It looks 
very similar to a frequency 
distribution.
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The Probability Mass metaphor

The idea behind this metaphor is that we can think of probability as stuff that 
can be distributed across the outcomes.

If you list all possible outcomes (within a given world that we focus on), the 
probability mass will sum to 1. (Like saying 100% of the probability mass!) 
This is an axiom of probability. It is part of the definition of probability. The 
probabilities of all of the (mutually exclusive) events will always sum to 1.
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The only difference in the plot 
between this probability distribution 
and a frequency distribution is the 
y-axis. For this probability 
distribution, which captures discrete 
events, the label on the axis is 
probability mass.

Probability mass is a metaphor. 
Mass just means “stuff”. (Mass is 
one of those deep, unexplained 
things in physics. We really don’t 
know what it is. It is the existence 
of matter.) 



Probability mass with coin flips

To see probability mass at work, let’s expand our example. Let’s flip 1, 2, and 
3 coins. First, we can look at the individual events. The probabilities for each 
outcome will add up to 1:

1 coin

2 coins

3 coins

= .5

= .5

= .25

= .25

= .25

= .25

= .125

= .125

= .125

= .125

= .125

= .125

= .125

= .125



Probability mass with coin flips

To see probability mass at work, let’s expand our example. Let’s flip 1, 2, and 
3 coins. First, we can look at the individual events. The probabilities for each 
outcome will add up to 1:

1 coin

= .5

= .5 0 heads

1 head



Probability mass with coin flips

To see probability mass at work, let’s expand our example. Let’s flip 1, 2, and 
3 coins. First, we can look at the individual events. The probabilities for each 
outcome will add up to 1:

2 coins

= .25

= .25

= .25

= .25
0 heads

1 head

2 heads = .25

= .5

= .25



Probability mass with coin flips

To see probability mass at work, let’s expand our example. Let’s flip 1, 2, and 
3 coins. First, we can look at the individual events. The probabilities for each 
outcome will add up to 1:

3 coins

= .125

= .125

= .125

= .125

= .125

= .125

= .125

= .1250 heads

1 head

2 heads

3 heads= .125

= .375

= .125

= .375



Probability mass with coin flips

We can also look at these as distributions. It would be boring to simply plot the 
equal probabilities of the individual events (a bunch of bars of exactly the 
same height). 

So, instead, let’s plot the probability of getting 0-6 heads when we do 1-6 coin 
flips.
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Probability mass with coin flips

First, notice that the probabilities of the events always sum to 1, even when 
we count number of heads.

Second, you will probably notice a pattern to the shapes. That is because coin 
flips follow a family of distributions called the binomial distribution. (We 
won’t study it in this class, but it is worth knowing that it exists!)
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Probability Density 

(Continuous Variables)



Continuous variables

So far, we have only looked at discrete variables. Things get more complicated 
when we look at continuous variables.

We cannot simply state the probability (mass) for a given score on a 
continuous variable. This is because continuous variables, by definition, have 
an infinite number of scores.

This means that the probability associated with any individual score is zero 
because any number divided by infinity is zero. (This is a mathematical 
fact.) If we plug infinity into the probability calculation, we will always get 
zero.

critical outcomes

all possible outcomes
P(event) =

critical outcomes

∞
= = 0

Infinity is weird. Our brains are not able to truly comprehend it. One way to 
get part way there is to imagine two things: (i) that the number of possible 
scores is really, really big; and (ii) that any specific score will only occur once 
— because we can always increase the precision of the measurement to make 
sure it is distinct from others (e.g., one height measurement of 172.5 might 
actually be 172.58375, and a second measurement might be 172.58376). This 
gets us very very small probabilities… which is part way to zero.



Continuous variables and bins

The solution is to create bins — just like we have already been doing in our 
distribution plots. This allows us to add up the probability mass in each bin so 
that it is not zero.
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But now we are doing something a little different. The y-axis is no longer 
probability mass, which is probability for a single value. It is probability for a 
range of values. We call this probability density:

The amount of probability in a specific range (bin) 
on a continuous scale.

probability 
density:

mass
range



The probability density metaphor

Stuff.mass:

The amount of stuff in a specific volume. (Things 
with more stuff in the same amount of volume have 
higher density. Lead has higher density than water.)

density: mass

volume

Probability as (metaphorical) stuff.probability 
mass:

The amount of probability in a specific range (bin) 
on a continuous scale. (Events that are more 
probable in the same sized range on the scale will 
have higher probability density.)

probability 
density:

mass

range



Interpreting probability density

Once you see the metaphor, it is 
straightforward to interpret probability density. 
You can take the width of the bin and multiply it 
by the density to get the probability mass of 
obtaining a score in the range of the bin. This 
follows from algebra and the equation for 
density:
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density =

mass = density x volume

probability mass
range

probability density =

probability mass = probability density x range

The 160-170 bin has a density around .025. So the probability mass is around 
.025*10 = .25. The 170-180 bin has a density around .0375, so the probability 
mass is around .0375*10 = .375. And if you do this for each of the bars, then 
sum their probability masses, they will add up to 1.



Smaller and smaller bins

You may recall from calculus that you can make smaller and smaller bins, 
approaching infinitesimally small bins, until you end up with a smooth curve.
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We can use the same logic with these smooth curves - the probability mass 
can be calculated from the probability density and a range of values.

0.00

0.01

0.02

0.03

0.04

130 140 150 160 170 180 190 200 210 220 230
Height (cm)

Pr
ob

ab
ilit

y 
de

ns
ity

∞

(This is also a case where knowing some calculus can be illuminating. We just 
ran into the idea of integrals/integration in a real issue in our work! We 
won’t pursue it here because I am not an expert on calculus. But if you’ve ever 
wondered if calculus would show up in your life, it does, at least in bits and 
pieces, if you pursue science.)



Probability Density Functions and the area 
under the curve 

(Our major tool in inferential statistics!)



Probability density functions
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Now that we understand what probability 
density is. We can connect one more concept. 

(  )
f(x) =

1

σ

x-µ
σ

2𝛑
e
−

2

1
2

Remember that smooth distributions like this 
are generated by equations. Those equations 
are functions - they relate one quantity (the 
x value) to another (the y value).

The functions that define probability 
distributions are called probability density 
functions because the value that they yield, 
which I have been calling f(x) to be as generic 
as possible, is probability density.

probability density

There is nothing too deep about this that you need to do or memorize. I just 
want you to know this term because you will see it whenever you read any 
books or papers about statistics. And you now have all of the knowledge you 
need to see why they are called probability density functions.



Area under the curve is probability

The area under the curve of a probability density 
function is 1.
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This follows from the fact that probability mass 
sums to 1, and the fact that the probability 
density function shows the full range of the 
scale. (Basically, it is like having a single bin that 
takes up the full range!)

This leads to one more shift in the way we think. 
Instead of thinking about percentile rank (an 
ordinal measure of frequency), we can think 
about the probability of the range of scores. 

The shaded region marks the area under the 
curve between a z-score of 1.96 and the right 
edge. That represents a probability mass of .025 
(from Table A1 or the pnorm() function). 

In other words, the probability of observing a z-score of 1.96 or higher is .025. 
That means there is a 2.5% chance of observing a score this high or higher.
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Percentile rank versus probability

Percentile rank and probability calculations use the same math.
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Percentile rank and probability calculations will yield the same value (though 
one is 0-100 and the other is 0-1).

The difference is in the concept.

Percentile rank is a frequency 
concept. It tells us how many scores 
are above or below a critical value. 

Probability is its own thing. It tells 
us how likely we are to get a score 
above or below a critical value

It is worth remembering that frequency has only one definition. It is the count 
of something. Probability has two different definitions: long-run relative 
frequency (frequentist) or subjective belief (Bayesian). This helps to show that 
they are different concepts (even if they are intimately related, particularly 
under the frequentist view).
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This is the foundation of inferential statistics

Given a probability distribution and a score, we 
can now calculate the probability of obtaining 
that score or one more extreme.

We can do this either with R functions like 
pnorm() or with z-scores and the table in our 
book.

This is the basis of the inferential statistical tests that we are about to learn. 
These tests calculate the probability of obtaining the the data from our 
experiment or data more extreme.

This is a major tool for us as scientists! Remember, we want to know how 
extreme our experimental result is. Now we can answer that question — we 
can say the probability of obtaining our result or a result more extreme!
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Falsification and the Philosophy of Science



The Problem of Confirmation

Humans tend to want to prove the hypotheses that they are testing. (I 
certainly do!) We call this confirmation in the philosophy of science:

confirmation: The act of collecting evidence that supports a hypothesis.

But there is a major logical flaw with confirmation. So this very human bias 
tends can be a problem for science.

The problem of  
confirmation:

Any given piece of evidence that can be used to confirm 
one theory can be used to confirm an infinite number of 
theories.

To see this in action, let’s take a really simple theory: All ravens are black

And let’s say you set out to confirm this theory. Well, evidence that supports a 
theory is sometimes called positive evidence. It is evidence that is directly 
predicted by the theory. In this case, that would be black ravens. So you go 
out to find ravens, and see if they are black:



The Problem of Confirmation

Let’s say that you are able to collect 300 ravens, 
and all of them are black. x 300

That is positive evidence for the theory that all ravens are black.

The problem is that it is also positive evidence for an infinite number of other 
theories that also predict at least 300 black ravens:

300 ravens are black and all of the rest are white.

301 ravens are black and all of the rest are white.

302 ravens are black and all of the rest are white.

303 ravens are black and all of the rest are white.

304 ravens are black and all of the rest are white.

305 ravens are black and all of the rest are white.

… and on and on…

I know this feels like a 
cheat, but these toy 
examples are there to 
show us the logic in its 
purest form. The same 
logic holds for complex 
theories too. 



The Problem of Confirmation

observations

theories

The problem of  
confirmation:

Any given piece of evidence that can be used to confirm 
one theory can be used to confirm an infinite number of 
theories.

The problem of confirmation arises 
because different theories can make 
overlapping predictions. If the 
observation that we have is part of 
that overlap, we can’t use it to 
uniquely confirm one theory.

One way to schematize this is by 
viewing the observations in our test 
as a subset of the predictions of the 
theory. 

If the evidence you have confirms an infinite number of theories, then you 
really haven’t made progress at all.



One solution to the problem of confirmation: 
Falsification



Falsification

Falsification: The act of collecting evidence that disproves a hypothesis.

The evidence that disproves a theory is sometimes called negative evidence. 
What would be negative evidence for the theory that all ravens are black?

A white raven! (Or any non-black color.)

Negative evidence is what the theory does not predict. In other words, in 
order for a theory to be testable, it must be clear what it doesn’t predict. (This 
should remind you of our second class - “a theory that predicts everything 
predicts nothing”!)

Karl Popper 
1902-1994

Falsification is most famously associated with Karl Popper, a 
philosopher who argued that “confirmation is a myth.”

If a prediction is shown to be false, then the theory is falsified. 

If a prediction is shown to be true, then we can’t say anything 
about the theory. All we can say is that the theory has not yet 
been falsified. 



Falsification is considered the “gold standard” 
by many scientists

The actual process of science is messy. It is rare to have a theory with such 
clear predictions as “all ravens are black”, and it is rare to have tests that are 
as clear cut as “find a white raven”.

Nonetheless, many scientists subscribe to falsification. They strive to build 
theories that make clear predictions, and they strive to create tests that look 
for negative evidence (something the theory does not predict).

The inferential method in frequentist statistics is called Null 
Hypothesis Significance Testing. It is predicated upon the 
idea of falsifying a hypothesis (specifically, the null 
hypothesis). So the logic of falsification is integral to 
everything we will do from this point forward in this course.

Why do we care?



A quick note about confirmation and Bayesian 
statistics.



Confirmation does exist.

Falsification is an ideal that many scientists strive for. And it is fundamental to 
frequentist statistics. However, I don’t want to leave you with the idea that 
confirmation does not exist in modern science. It does.

Here is a famous example to show you that many people do make 
decisions based on confirmation:

Let’s say that you are asked to design a new 
bridge. You have two choices:

An old design that has been used for hundreds 
of bridges, none of which have collapsed.

1.

A brand new design that has never been 
tested before.

2.

Which would you choose?

Falsification says that both bridges are equal. Both have “not yet been falsified.”

I’d choose #1!

Confirmation says that the bridge that has been tested millions of times (each 
car that has driven over it) and not failed is superior.



Probabilities may allow for confirmation

The problem of confirmation teaches us that positive evidence is compatible 
with an infinite number of theories.

But this does not mean that the evidence is equally compatible with each 
theory.

This observation is compatible with an infinite number of theories:

300 ravens are black, the rest are white.

301 ravens are black, the rest are white.

302 ravens are black, the rest are white.

…

95% of ravens are black, 5% are white.

100% of ravens are black.

Let’s say you’ve observed 300 black 
ravens, and no white ravens.

x 300

x 0

But these are relatively 
unlikely. It is unlikely that you 
just happened to find all of the 
black ravens and none of the 
white ones!

These are more likely.



Bayesian statistics

This intuition suggests that, even though positive evidence is compatible with 
an infinite number of theories, positive evidence can suggest that some 
theories are more likely than other theories.

So what we want to do is develop a precise way to conclude how likely a 
theory is given a piece of positive evidence. 

P(theory | evidence)
P(evidence | theory)

=
x P(theory)

P(evidence)

And here is an equation that might do it for us. It is called Bayes Theorem.

Don’t worry. You don’t need to know this slide at all for 
this class. We are doing frequentist statistics. But I 
want you to know how frequentist statistics compares to 
Bayesian statistics. And there are two major 
differences: they differ in the definition of probability 
(objective/subjective), and they differ in whether they 
pursue falsification or confirmation.

Thomas Bayes 
1701-1761


